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Incompressible Stokes flow with heterogeneous viscosity
Commonly occurring problem in CS&E:

Creeping non-Newtonian fluid modeled by incompressible Stokes equations with power-law
rheology yields a spatially-varying and highly heterogeneous viscosity after linearization.

For example Earth’s mantle convection:
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Incompressible Stokes flow with heterogeneous viscosity
Commonly occurring problem in CS&E:

Creeping non-Newtonian fluid modeled by incompressible Stokes equations with power-law
rheology yields a spatially-varying and highly heterogeneous viscosity after linearization.

Nonlinear incompressible Stokes PDE:
−∇ ·

[
µ(u,x) (∇u +∇u>)

]
+∇p = f viscosity µ, RHS forcing f
−∇ · u = 0 seek: velocity u, pressure p

Linearization (with Newton), then discretization (with inf-sup stable finite elements) yields:[
Aµ B>
B 0

] [
u
p

]
=
[

f
0

]
→ poor conditioning due to heterogeneous µ

Iterative scheme with upper triangular block preconditioning:[
Aµ B>
B 0

] [
Ãµ B>
0 S̃

]−1 [
u
p

]
=
[

f
0

]
Ã−1
µ ≈ A−1

µ

S̃−1 ≈ S−1 := (BA−1
µ B>)−1
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Severe challenges for parallel scalable PDE solvers

. . . arising, e.g., in Earth’s mantle convection:
I Severe nonlinearity, heterogeneity, and anisotropy of the

Earth’s rheology
I Sharp viscosity gradients in narrow regions

(6 orders of magnitude drop in ∼5 km)
I Wide range of spatial scales and highly localized features,

e.g., plate boundaries of size O(1 km) influence plate motion
at continental scales of O(1000 km)

I Adaptive mesh refinement is essential
I High-order finite elements Qk × Pdisc

k−1, order k ≥ 2, with
local mass conservation; yields a difficult to deal with
discontinuous, modal pressure approximation Viscosity (colors), surface

velocity at sol. (arrows),
and locally refined mesh.
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w-BFBT: Robust inverse Schur complement approximation[
Aµ B>
B 0

] [
Ãµ B>
0 S̃

]−1 [
u
p

]
=
[

f
0

]
Ã−1
µ ≈ A−1

µ

S̃−1 ≈ S−1 := (BA−1
µ B>)−1

Propose: S̃−1
w-BFBT :=

(
BC−1

w B>
)−1

︸ ︷︷ ︸
Poisson solve

(
BC−1

w AµD−1
w B>

) (
BD−1

w B>
)−1

︸ ︷︷ ︸
Poisson solve

Choice of weighted scaling matrices Cw = Dw := M̃u(√µ) is critical for efficacy & robustness.
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w-BFBT: Robust inverse Schur complement approximation[
Aµ B>
B 0

] [
Ãµ B>
0 S̃

]−1 [
u
p

]
=
[

f
0

]
Ã−1
µ ≈ A−1

µ → Multigrid V-cycle
S̃−1 ≈ S−1 := (BA−1

µ B>)−1

Propose: S̃−1
w-BFBT :=

(
BC−1

w B>
)−1

︸ ︷︷ ︸
→ Multigrid V-cycle

(
BC−1

w AµD−1
w B>

) (
BD−1

w B>
)−1

︸ ︷︷ ︸
→ Multigrid V-cycle

Choice of weighted scaling matrices Cw = Dw := M̃u(√µ) is critical for efficacy & robustness.
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HMG: Hybrid spectral-geometric-algebraic multigrid
HMG hierarchy

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

cont. nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

HMG V-cycle

p-MG

h-MG

AMG

direct

high-order
L2-projection

linear
L2-projection

linear
projection

I Multigrid hierarchy is generated from an adaptively refined octree-based mesh
I Re-discretization of PDEs at coarser levels
I Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR);

sufficiently coarse meshes occupy only subsets of cores
I Coarse grid solver: AMG (PETSc’s GAMG) invoked on small core counts
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HMG: Hybrid spectral-geometric-algebraic multigrid
HMG hierarchy

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

cont. nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

HMG V-cycle

p-MG

h-MG

AMG

direct

high-order
L2-projection

linear
L2-projection

linear
projection

I High-order L2-projection onto coarser levels; restriction & interpolation are L2-adjoints
I Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized matrix-free

high-order stiffness apply; assembly of high-order diagonal only
I Efficacy, i.e. error reduction, of HMG V-cycles is independent of core count
I No collective communication needed in spectral-geometric MG cycles
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HMG: Hybrid spectral-geometric-algebraic multigrid
HMG hierarchy
pressure space

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

discont. modal

cont. nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

HMG V-cycle

p-MG

h-MG

AMG

direct

modal to
nodal proj.
high-order

L2-projection

linear
L2-projection

linear
projection

I High-order L2-projection onto coarser levels; restriction & interpolation are L2-adjoints
I Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized matrix-free

high-order stiffness apply; assembly of high-order diagonal only
I Efficacy, i.e. error reduction, of HMG V-cycles is independent of core count
I No collective communication needed in spectral-geometric MG cycles
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p4est: Parallel forest-of-octrees AMR library [p4est.org]
Scalable geometric multigrid coarsening due to:

I Forest-of-octree based meshes enable fast refinement/coarsening
I Octrees and space filling curves used for fast neighbor search, mesh repartitioning, and 2:1

mesh balancing in parallel
k0 k1

p0 p1 p1 p2

k0

k1

x0

y0

x1

y1

Colors depict different processor cores.
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Geometric coarsening: Repartitioning & core-thinning
I Parallel repartitioning of locally refined meshes for load balancing
I Core-thinning to avoid excessive communication in multigrid cycle
I Reduced MPI communicators containing only non-empty cores
I Ensure coarsening across core boundaries: Partition families of octants/elements on same

core for next coarsening sweep

36 38 36 38 9 14 27 17 35 0 32 0

coarsen,
2:1 bal. partition

Colors depict different processor cores, numbers indicate element count on each core.
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Algorithmic scalability for HMG+w-BFBT
#iterations for solving
sub-systems Aµu = f ,
Kdp = g, and full
Stokes system; fixed
k = 2 (top table),
` = 5 (bottom table).

` u-DOF [×106] It. Aµ p-DOF [×106] It. Kd DOF [×106] It. Stokes

5 0.82 18 0.13 7 0.95 33
6 6.44 18 1.05 6 7.49 33
7 50.92 18 8.39 6 59.31 34
8 405.02 18 67.11 6 472.12 34
9 3230.67 18 536.87 6 3767.54 34
10 25807.57 18 4294.97 6 30102.53 34

k u-DOF [×106] It. Aµ p-DOF [×106] It. Kd DOF [×106] It. Stokes

2 0.82 18 0.13 7 0.95 33
3 2.74 20 0.32 8 3.07 37
4 6.44 20 0.66 7 7.10 36
5 12.52 23 1.15 12 13.67 43
6 21.56 23 1.84 12 23.40 50
7 34.17 22 2.75 10 36.92 54
8 50.92 22 3.93 10 54.86 67
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Algorithmic scalability of inexact Newton-Krylov nonlinear solver

Max level of Finest resolution DOF Newton Total GMRES
refinement `max [m] [×106] iterations iterations

10 2443 0.96 14 1408
11 1222 2.67 18 1160
12 611 5.58 21 1185
13 305 11.82 21 1368
14 153 36.35 27 1527

I Finite element order fixed at Q2 × Pdisc
1

I Locally refined mesh with aggressive refinement at plate boundaries
I Multigrid parameters: 1 HMG V-cycle with 3+3 smoothing
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Implementation optimizations for Blue Gene/Q
(A) Before optimizations

(B) Reduction of blocking MPI communication

(C) Minimization of integer operations & cache misses

(D) Optimization of element-local derivatives; SIMD
vectorization

(E) OpenMP threading of matrix-free apply loops
(e.g. multigrid smoothing, intergrid projection) Optimization phase
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(F) MPI communication reduction, overlapping with computations, OpenMP threading in intergrid
operators

(G) Finite element kernel optimizations (e.g. increase of flop-byte ratio, consecutive memory access,
pipelining)

(H) Low-level optimizations (e.g. boundary condition enforcement, interpolation of hanging finite
element nodes)
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Global mantle convection problem for scalability tests

Discretization parameters to test parallel scalability:
I Finite element order k = 2 is fixed (Qk × Pdisc

k−1)
I Vary max mesh refinement `max for weak scalability
I Refinement down to ∼75m local resolution
I Resulting mesh has 9 levels of refinement

Multigrid parameters for Aµ and Kd:
I 1 HMG V-cycle with 3+3 smoothing
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Extreme weak scalability on Sequoia supercomputer
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Ideal weak scalability
Solve [DOF/(sec/iter)]
Setup [DOF/sec]

Performed on LLNL’s Sequoia (Vulcan up to 65,536 cores): IBM Blue Gene/Q architecture with
96 racks resulting in 98,304 nodes, each node contains 16 compute cores and 16 GBytes of memory.
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Extreme strong scalability on Sequoia supercomputer
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Solve 4×OMP16

Performed on LLNL’s Sequoia (Vulcan up to 65,536 cores): IBM Blue Gene/Q architecture with
96 racks resulting in 98,304 nodes, each node contains 16 compute cores and 16 GBytes of memory.
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